3.38 \(\int \frac {\csc (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=140 \[ \frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c-d} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f \sqrt {c-d}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} \sqrt {c} f} \]

[Out]

-2*arctanh(cos(f*x+e)*a^(1/2)*c^(1/2)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2))/f/a^(1/2)/c^(1/2)+arctanh
(1/2*cos(f*x+e)*a^(1/2)*(c-d)^(1/2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2))*2^(1/2)/f/a^(1/2)/(
c-d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.47, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2947, 2782, 208, 2943, 206} \[ \frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c-d} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f \sqrt {c-d}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} \sqrt {c} f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

(-2*ArcTanh[(Sqrt[a]*Sqrt[c]*Cos[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])])/(Sqrt[a]*Sqrt
[c]*f) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[c - d]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[
e + f*x]])])/(Sqrt[a]*Sqrt[c - d]*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 2943

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Dist[(-2*a)/f, Subst[Int[1/(1 - a*c*x^2), x], x, Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sq
rt[c + d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[
b*c + a*d, 0]

Rule 2947

Int[1/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)]]), x_Symbol] :> -Dist[b/a, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] + Dist[1/a,
 Int[Sqrt[a + b*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
&& NeQ[b*c - a*d, 0] && (NeQ[a^2 - b^2, 0] || NeQ[c^2 - d^2, 0])

Rubi steps

\begin {align*} \int \frac {\csc (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \, dx &=\frac {\int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c+d \sin (e+f x)}} \, dx}{a}-\int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \, dx\\ &=-\frac {2 \operatorname {Subst}\left (\int \frac {1}{1-a c x^2} \, dx,x,\frac {\cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{f}+\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{2 a^2-(a c-a d) x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{f}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} \sqrt {c} f}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c-d} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} \sqrt {c-d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 34.49, size = 309729, normalized size = 2212.35 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Csc[e + f*x]/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [B]  time = 1.07, size = 3005, normalized size = 21.46 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(2)*a*c*log(((c^2 - 14*c*d + 17*d^2)*cos(f*x + e)^3 - (13*c^2 - 22*c*d - 3*d^2)*cos(f*x + e)^2 + 4*s
qrt(2)*((c^2 - 4*c*d + 3*d^2)*cos(f*x + e)^2 - 4*c^2 + 8*c*d - 4*d^2 - (3*c^2 - 4*c*d + d^2)*cos(f*x + e) + (4
*c^2 - 8*c*d + 4*d^2 + (c^2 - 4*c*d + 3*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f
*x + e) + c)/sqrt(a*c - a*d) - 4*c^2 - 8*c*d - 4*d^2 - 2*(9*c^2 - 14*c*d + 9*d^2)*cos(f*x + e) + ((c^2 - 14*c*
d + 17*d^2)*cos(f*x + e)^2 - 4*c^2 - 8*c*d - 4*d^2 + 2*(7*c^2 - 18*c*d + 7*d^2)*cos(f*x + e))*sin(f*x + e))/(c
os(f*x + e)^3 + 3*cos(f*x + e)^2 + (cos(f*x + e)^2 - 2*cos(f*x + e) - 4)*sin(f*x + e) - 2*cos(f*x + e) - 4))/s
qrt(a*c - a*d) + sqrt(a*c)*log(((a*c^4 - 28*a*c^3*d + 70*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*cos(f*x + e)^5 + a*c^
4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 - (31*a*c^4 - 196*a*c^3*d + 154*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)
*cos(f*x + e)^4 - 2*(81*a*c^4 - 252*a*c^3*d + 150*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*cos(f*x + e)^3 + 2*(79*a*c^4
 - 100*a*c^3*d + 74*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*cos(f*x + e)^2 - 8*((c^3 - 7*c^2*d + 7*c*d^2 - d^3)*cos(f*x
 + e)^4 - 2*(5*c^3 - 14*c^2*d + 5*c*d^2)*cos(f*x + e)^3 + 51*c^3 - 59*c^2*d + 17*c*d^2 - d^3 - 2*(18*c^3 - 33*
c^2*d + 12*c*d^2 - d^3)*cos(f*x + e)^2 + 2*(13*c^3 - 14*c^2*d + 5*c*d^2)*cos(f*x + e) + ((c^3 - 7*c^2*d + 7*c*
d^2 - d^3)*cos(f*x + e)^3 - 51*c^3 + 59*c^2*d - 17*c*d^2 + d^3 + (11*c^3 - 35*c^2*d + 17*c*d^2 - d^3)*cos(f*x
+ e)^2 - (25*c^3 - 31*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sq
rt(d*sin(f*x + e) + c) + (289*a*c^4 - 476*a*c^3*d + 230*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*cos(f*x + e) + (a*c^4
+ 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 + (a*c^4 - 28*a*c^3*d + 70*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*cos(f
*x + e)^4 + 32*(a*c^4 - 7*a*c^3*d + 7*a*c^2*d^2 - a*c*d^3)*cos(f*x + e)^3 - 2*(65*a*c^4 - 140*a*c^3*d + 38*a*c
^2*d^2 - 12*a*c*d^3 + a*d^4)*cos(f*x + e)^2 - 32*(9*a*c^4 - 15*a*c^3*d + 7*a*c^2*d^2 - a*c*d^3)*cos(f*x + e))*
sin(f*x + e))/(cos(f*x + e)^5 + cos(f*x + e)^4 - 2*cos(f*x + e)^3 - 2*cos(f*x + e)^2 + (cos(f*x + e)^4 - 2*cos
(f*x + e)^2 + 1)*sin(f*x + e) + cos(f*x + e) + 1)))/(a*c*f), 1/4*(sqrt(2)*a*c*log(((c^2 - 14*c*d + 17*d^2)*cos
(f*x + e)^3 - (13*c^2 - 22*c*d - 3*d^2)*cos(f*x + e)^2 + 4*sqrt(2)*((c^2 - 4*c*d + 3*d^2)*cos(f*x + e)^2 - 4*c
^2 + 8*c*d - 4*d^2 - (3*c^2 - 4*c*d + d^2)*cos(f*x + e) + (4*c^2 - 8*c*d + 4*d^2 + (c^2 - 4*c*d + 3*d^2)*cos(f
*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)/sqrt(a*c - a*d) - 4*c^2 - 8*c*d - 4*d
^2 - 2*(9*c^2 - 14*c*d + 9*d^2)*cos(f*x + e) + ((c^2 - 14*c*d + 17*d^2)*cos(f*x + e)^2 - 4*c^2 - 8*c*d - 4*d^2
 + 2*(7*c^2 - 18*c*d + 7*d^2)*cos(f*x + e))*sin(f*x + e))/(cos(f*x + e)^3 + 3*cos(f*x + e)^2 + (cos(f*x + e)^2
 - 2*cos(f*x + e) - 4)*sin(f*x + e) - 2*cos(f*x + e) - 4))/sqrt(a*c - a*d) + 2*sqrt(-a*c)*arctan(-1/4*((c^2 -
6*c*d + d^2)*cos(f*x + e)^2 - 9*c^2 + 6*c*d - d^2 + 8*(c^2 - c*d)*sin(f*x + e))*sqrt(-a*c)*sqrt(a*sin(f*x + e)
 + a)*sqrt(d*sin(f*x + e) + c)/((a*c^2*d - a*c*d^2)*cos(f*x + e)^3 - (a*c^3 - 3*a*c^2*d)*cos(f*x + e)*sin(f*x
+ e) + (2*a*c^3 - a*c^2*d + a*c*d^2)*cos(f*x + e))))/(a*c*f), -1/4*(2*sqrt(2)*a*c*sqrt(-1/(a*c - a*d))*arctan(
-1/4*sqrt(2)*sqrt(a*sin(f*x + e) + a)*((c - 3*d)*sin(f*x + e) - 3*c + d)*sqrt(d*sin(f*x + e) + c)*sqrt(-1/(a*c
 - a*d))/(d*cos(f*x + e)*sin(f*x + e) + c*cos(f*x + e))) - sqrt(a*c)*log(((a*c^4 - 28*a*c^3*d + 70*a*c^2*d^2 -
 28*a*c*d^3 + a*d^4)*cos(f*x + e)^5 + a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 - (31*a*c^4 - 196*a*
c^3*d + 154*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*cos(f*x + e)^4 - 2*(81*a*c^4 - 252*a*c^3*d + 150*a*c^2*d^2 - 28*a*c
*d^3 + a*d^4)*cos(f*x + e)^3 + 2*(79*a*c^4 - 100*a*c^3*d + 74*a*c^2*d^2 - 4*a*c*d^3 - a*d^4)*cos(f*x + e)^2 -
8*((c^3 - 7*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e)^4 - 2*(5*c^3 - 14*c^2*d + 5*c*d^2)*cos(f*x + e)^3 + 51*c^3 - 5
9*c^2*d + 17*c*d^2 - d^3 - 2*(18*c^3 - 33*c^2*d + 12*c*d^2 - d^3)*cos(f*x + e)^2 + 2*(13*c^3 - 14*c^2*d + 5*c*
d^2)*cos(f*x + e) + ((c^3 - 7*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e)^3 - 51*c^3 + 59*c^2*d - 17*c*d^2 + d^3 + (11
*c^3 - 35*c^2*d + 17*c*d^2 - d^3)*cos(f*x + e)^2 - (25*c^3 - 31*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e))*sin(f*x +
 e))*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c) + (289*a*c^4 - 476*a*c^3*d + 230*a*c^2*d^2 -
28*a*c*d^3 + a*d^4)*cos(f*x + e) + (a*c^4 + 4*a*c^3*d + 6*a*c^2*d^2 + 4*a*c*d^3 + a*d^4 + (a*c^4 - 28*a*c^3*d
+ 70*a*c^2*d^2 - 28*a*c*d^3 + a*d^4)*cos(f*x + e)^4 + 32*(a*c^4 - 7*a*c^3*d + 7*a*c^2*d^2 - a*c*d^3)*cos(f*x +
 e)^3 - 2*(65*a*c^4 - 140*a*c^3*d + 38*a*c^2*d^2 - 12*a*c*d^3 + a*d^4)*cos(f*x + e)^2 - 32*(9*a*c^4 - 15*a*c^3
*d + 7*a*c^2*d^2 - a*c*d^3)*cos(f*x + e))*sin(f*x + e))/(cos(f*x + e)^5 + cos(f*x + e)^4 - 2*cos(f*x + e)^3 -
2*cos(f*x + e)^2 + (cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)*sin(f*x + e) + cos(f*x + e) + 1)))/(a*c*f), -1/2*(s
qrt(2)*a*c*sqrt(-1/(a*c - a*d))*arctan(-1/4*sqrt(2)*sqrt(a*sin(f*x + e) + a)*((c - 3*d)*sin(f*x + e) - 3*c + d
)*sqrt(d*sin(f*x + e) + c)*sqrt(-1/(a*c - a*d))/(d*cos(f*x + e)*sin(f*x + e) + c*cos(f*x + e))) - sqrt(-a*c)*a
rctan(-1/4*((c^2 - 6*c*d + d^2)*cos(f*x + e)^2 - 9*c^2 + 6*c*d - d^2 + 8*(c^2 - c*d)*sin(f*x + e))*sqrt(-a*c)*
sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)/((a*c^2*d - a*c*d^2)*cos(f*x + e)^3 - (a*c^3 - 3*a*c^2*d)*co
s(f*x + e)*sin(f*x + e) + (2*a*c^3 - a*c^2*d + a*c*d^2)*cos(f*x + e))))/(a*c*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {d \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*sin(f*x + e)), x)

________________________________________________________________________________________

maple [B]  time = 0.40, size = 357, normalized size = 2.55 \[ -\frac {\left (-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )\right ) \sqrt {c +d \sin \left (f x +e \right )}\, \left (\ln \left (\frac {\sqrt {c}\, \sqrt {2}\, \sqrt {\frac {c +d \sin \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right )-c \cos \left (f x +e \right )+d \sin \left (f x +e \right )+c}{\sin \left (f x +e \right ) \sqrt {c}}\right ) \sqrt {2 c -2 d}+2 \ln \left (-\frac {2 \left (\sqrt {2 c -2 d}\, \sqrt {2}\, \sqrt {\frac {c +d \sin \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right )+c \sin \left (f x +e \right )-d \sin \left (f x +e \right )+c \cos \left (f x +e \right )-d \cos \left (f x +e \right )-c +d \right )}{-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}\right ) \sqrt {c}-\ln \left (-\frac {2 \left (\sqrt {c}\, \sqrt {2}\, \sqrt {\frac {c +d \sin \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right )-d \cos \left (f x +e \right )+c \sin \left (f x +e \right )+d \right )}{-1+\cos \left (f x +e \right )}\right ) \sqrt {2 c -2 d}\right ) \sqrt {2}}{2 f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sin \left (f x +e \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sqrt {c}\, \sqrt {2 c -2 d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x)

[Out]

-1/2/f*(-1+cos(f*x+e)-sin(f*x+e))*(c+d*sin(f*x+e))^(1/2)*(ln((c^(1/2)*2^(1/2)*((c+d*sin(f*x+e))/(cos(f*x+e)+1)
)^(1/2)*sin(f*x+e)-c*cos(f*x+e)+d*sin(f*x+e)+c)/sin(f*x+e)/c^(1/2))*(2*c-2*d)^(1/2)+2*ln(-2*((2*c-2*d)^(1/2)*2
^(1/2)*((c+d*sin(f*x+e))/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)+c*sin(f*x+e)-d*sin(f*x+e)+c*cos(f*x+e)-d*cos(f*x+e)-
c+d)/(-1+cos(f*x+e)-sin(f*x+e)))*c^(1/2)-ln(-2*(c^(1/2)*2^(1/2)*((c+d*sin(f*x+e))/(cos(f*x+e)+1))^(1/2)*sin(f*
x+e)-d*cos(f*x+e)+c*sin(f*x+e)+d)/(-1+cos(f*x+e)))*(2*c-2*d)^(1/2))/(a*(1+sin(f*x+e)))^(1/2)/sin(f*x+e)*2^(1/2
)/((c+d*sin(f*x+e))/(cos(f*x+e)+1))^(1/2)/c^(1/2)/(2*c-2*d)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {d \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*sin(f*x + e)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,\sqrt {c+d\,\sin \left (e+f\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(e + f*x)*(a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^(1/2)),x)

[Out]

int(1/(sin(e + f*x)*(a + a*sin(e + f*x))^(1/2)*(c + d*sin(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \sqrt {c + d \sin {\left (e + f x \right )}} \sin {\left (e + f x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(f*x+e)/(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(sin(e + f*x) + 1))*sqrt(c + d*sin(e + f*x))*sin(e + f*x)), x)

________________________________________________________________________________________